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Abstract 

 
2D human pose estimation still faces difficulty in low-resolution images. Most existing top-
down approaches scale up the target human bonding box images to the large size and insert 
the scaled image into the network. Due to up-sampling, artifacts occur in the low-resolution 
target images, and the degraded images adversely affect the accurate estimation of the joint 
positions. To address this issue, we propose a multi-resolution input feature fusion network 
for human pose estimation. Specifically, the bounding box image of the target human is 
rescaled to multiple input images of various sizes, and the features extracted from the multiple 
images are fused in the network. Moreover, we introduce a guiding channel which induces the 
multi-resolution input features to alternatively affect the network according to the resolution 
of the target image. We conduct experiments on MS COCO dataset which is a representative 
dataset for 2D human pose estimation, where our method achieves superior performance 
compared to the strong baseline HRNet and the previous state-of-the-art methods. 
 
 
Keywords: Human keypoint detection, Human pose estimation, Low-resolution image, 
Small person pose estimation, 2D pose estimation 
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 1. Introduction 

2D human pose estimation determines the pixel locations of body joints in a given single 
image. 

Estimating human pose has received considerable attention in the field of computer vision, 
and has made great progress with the introduction of deep learning [1-20]. Pose estimation 
plays an important role in various human-computer interaction tasks, such as surveillance 
systems and autonomous driving. In the applications, precisely estimated joint positions are 
leveraged as features of action and gesture recognition. 

Many recent studies show the good performance in high-resolution images, however, as the 
resolution decreases, the performance drastically decreases as well [4-9]. The same problem 
happens when the size of the person in the image becomes smaller because the person is far 
from a camera. However, for practical industrial applications, it is important to estimate the 
pose of a distant person due to the limited number of cameras in the field. In addition, in order 
to process images captured by various camera systems, a model that robustly operates in low-
resolution images is essential. In this paper, we propose a model that accurately estimates 2D 
human pose in low-resolution human images while maintaining the performance for images 
for various sizes. 

2D human pose estimation methods are classified into two categories, bottom-up and top-
down approaches. The bottom-up methods first obtain joint candidates for the input image, 
and then estimate the pose of each person by analyzing the correlation between the obtained 
joints [4, 5].  On the other hand, the top-down methods first detect the person in the image, 
and then the positions of joints are estimated from the region of the detected person [6-9, 18-
19]. In general, the bottom-up methods are faster than the top-down methods when several 
persons exist in one image. Instead, the top-down methods generally show higher accuracy 
than the bottom-up methods. Our proposed model is based on the top-down approach to predict 
joint positions of the persons. 
There are a few existing studies on 2D pose estimation focusing on low-resolution images. 

The method in [13] is a firstly proposed pose estimation model for low-resolution images in 
which tiny people dataset was generated to validate their model, but the dataset is currently 
not available. In the field of 3D human pose estimation, the method in [14] attempts to estimate 
accurate 3D joint positions from low-resolution images. This method has improved the 
performance by jointly training several networks of the same structure whose inputs are 
images with different resolutions. The training scheme in [14] improved the performance of 
3D pose estimation, however, the memory consumption increases depending on the number 
of network parameters trained simultaneously, making it difficult to apply it to models with a 
large number of parameters. Recently, a method of scaling up the image using a deep learning-
based super-resolution model, and then applying the generated high-resolution image to the 
Hourglass pose estimation network [6] has been proposed [15]. Although this method greatly 
improved the performance for 32×24 human images, it has a weakness that a single model 
cannot cope with various image resolutions in that the super-resolution model operates at a 
fixed magnification. In addition, it is difficult to be used in real-time applications due to the 
computational burden caused by the super-resolution module.  
In this paper, we propose a model that improves 2D joint estimation accuracy in low-

resolution images with little increase in the computational cost on the basis of the structure of 
HRNet [9], which is a strong baseline among the current top-down methods. Previous methods 
scale the region of the person to the fixed-sized image to leverage it as an input to the network 
[6-9]. In those methods, excessive artifacts may occur in a low-resolution image scaled up by 
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a large ratio, which consequently causes errors in pose estimation. On the other hand, scaling 
down a high-resolution image brings a loss of information. To overcome this problem, we 
scale the original bounding box for the person image to multiple resolutions and leverage all 
of the scaled images as inputs in the following pose estimation network. In addition, we 
introduce the guiding channel to let the network know which input image is closest to the 
original image size. This allows a single network to work robustly on the images with various 
resolutions. The proposed method improves the performance of 2D pose estimation by adding 
a few light convolution layers without computationally expensive modules, such as a super-
resolution module.   
To summarize, we make the following contributions in this work: 
ㆍ We propose a network that effectively estimates 2D human poses on images of various 

resolutions, especially low-resolution images, through the multi-scale input feature 
fusion and a guiding channel. 

ㆍ We find the optimal model among various network structures and the network input 
image sizes through experiments. 

ㆍ On a representative dataset for 2D human pose estimation, MS COCO [21], the proposed 
model achieves superior performance compared to the strong baseline HRNet [9] and 
previous state-of-the-art methods. Qualitative comparison against the baseline model is 
provided and it is verified that our model works appropriately on the target surveillance 
system. 

2. Related Work 

2.1 2D pose estimation 
Existing methods before the advent of deep learning have used hand-crafted features such as 
Histogram of Oriented Gradients (HOG) and Local Binary Pattern (LBP) to estimate human 
features [1-3]. Recently, pose estimation methods using deep learning have shown the great 
performance [4-20]. 2D human pose estimation has been developed by two approaches, top-
down and bottom–up approaches. The top-down approach first detects the regions of the 
persons form the image and then estimates the joint positions of the person within the detected 
region. The bottom-up approach first detects human joint candidates in the given image, and 
it connects the detected joints to the human skeleton structure by considering the correlation 
between the joints. The bottom-up methods are generally faster than the top-down methods. 
However, the estimation accuracy of the bottom-up approach is lower than that of the top-
down approach because it is difficult to connect joint candidates belonging to one person 
without region information of the human especially when several persons with different scales 
exist in the image. 
One of the representative bottom-up methods is OpenPose [4] which finds joint candidates 

in the image by generating a part confidence map. After then, joints belonging to each person 
are grouped by estimating the relationship between joints from the part affinity field. Recently, 
a method for improving performance by combining a top-down method with a bottom-up 
method has been proposed [5, 16, 17]. In the method in [5], the joint position estimation and 
the person detection were simultaneously performed to find the accurate joint associations by 
resolving the performance degradation when there exist multiple persons with different scales, 
which is the fundamental problem of the bottom-up methods 

Current state-of-the-art top-down methods improves their performance by introducing a high-
to-low and low-to-high framework that scales down and then scales up the input image while 
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passing through the network [6-9, 18, 19].  Hourglass [6] improved the pose estimation 
accuracy by stacking autoencoder networks including symmetrical layers and residual 
connections. In addition, SimpleBaseline [7] is a network that introduces a high-to-low process 
composed of multiple deep layers and relatively light low-to-high process. Cascaded Pyramid 
Network (CPN) [8] is composed of a cascade process that localizes evident joints in the 
pyramid network and then finds difficult joints in the separated refinement network. HRNet 
[9] introduce a multi-scale fusion network that fuses high-resolution and low-resolution 
features which are generated in the middle layers in the network. This method greatly 
improved the performance of 2D pose estimation, and many recent methods leveraged this 
framework as a baseline [10]. In this study, we propose a model that maintains the average 
accuracy of pose estimation in all resolutions of the input images while showing superior 
performance especially for low-resolution images on the basis of the structure of HRNet [9]. 

2.2 Pose estimation for low-resolution images 
2D pose estimation methods basically aim to be robust to different resolutions of images. In 
general, the performance for the low-resolution image is significantly lower than that of the 
high-resolution image. In order to apply the model to real world applications, pose estimation 
of the person far away from a camera is important due to the limited number of cameras in the 
field. However, there are a few studies focusing on pose estimation for small persons or low-
resolution images. Therefore, we first review object detection and face detection in low-
resolution images, which is a similar research field, and then introduce studies related to 2D 
and 3D pose estimation. 
Several deep learning-based methods for small object detection have been proposed. In the 

methods, low-resolution images are scaled up and the detection process is performed in the 
generated high-resolution images [11-12]. The method in [11] first detects face candidates and 
upscale them using a generator network consisting of several convolution and deconvolution 
layers. Then a discriminator network classifies face or non-face images. The generator and the 
discriminator are trained in an adversarial manner. The method in [12] leverages the super-
resolution module to scale up the image size of the candidate object estimated by the object 
detector, and then performs the precise object detection process again with the high-resolution 
images. 

The method of [13] is the first 2D pose estimation model focusing on small people in the 
image. The probabilistic model was introduced for modeling the ambiguity that arises from 
estimating human poses in small images. This model estimates posterior probability maps for 
all joints to regress the joint positions, and each probability map consists of a Gaussian mixture 
model for semi-dense subpixels. The 3D pose estimation model which is robust for low-
resolution images was first proposed in [14]. Input images with different resolutions are trained 
on the different networks with same structure, and the resolution-dependent parameters of each 
network were adaptively integrated to induce a robust model for images of various sizes. In 
addition, the performance of 3D pose estimation using the low-resolution image was improved 
by allowing the results of the network assigned high-resolution images to guide the learning 
of the network assigned low-resolution images. This scheme is difficult to apply to a model 
with a large number of parameters, because the number of parameters doubles according to 
the number of resolutions used. The method of [15] generates high-resolution images by 
inserting the pre-detected region of interest into the super resolution module, and then 
performs pose estimation with the scaled up image using the Hourglass [6] model. Because 
the super resolution module is trained with a fixed magnification, there is a limitation that only 
the input images of the fixed resolution range can be accepted for the whole network. 
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Furthermore, as the super resolution network is added, the number of parameters increases, 
slowing down for pose estimation and making it difficult to be used in real-time systems. 
In this study, we propose a 2D pose estimation model that uses multi-resolution images as 

inputs to the network to be robust on both low-resolution and high-resolution images. By 
adding only a few stem layers, the proposed model outperforms HRNet [9] for the low-
resolution images while maintaining the average performance of various sized images. 

3. Method 

3.1 HRNet Model Architecture 

 
 

Fig. 1. The framework of HRNet [9] with notations. 
 

In contrast to the serial connection of layers in the previous 2D pose estimation networks, 
HRNet [9] achieved high performance by configuring the layers both in parallel and in series. 
In HRNet [9], several high-to-low subnetworks are connected in parallel, where several stages 
are serially connected in each high-to-low subnetwork. If the k-th stage of the n-th subnetwork 
is denoted by 𝑆𝑆𝑛𝑛𝑛𝑛. The whole framework is illustrated in Fig. 1. 

Each stage involves a multi-scale fusion process that aggregates features from different 
subnetworks. The input features of 𝑆𝑆𝑛𝑛𝑛𝑛 aggregates the output features of 𝑆𝑆1(𝑛𝑛+𝑘𝑘−2), 𝑆𝑆2(𝑛𝑛+𝑘𝑘−3), 
… , 𝑆𝑆(𝑛𝑛+𝑘𝑘−2)1. For example, the features from 𝑆𝑆13, 𝑆𝑆22, and 𝑆𝑆31 are combined and inserted 
into stage 𝑆𝑆23. Strided convolution or up-sampling is used to match the size of feature maps to 
be integrated. To generate an input feature of 𝑆𝑆𝑛𝑛𝑛𝑛, we reduce the size of the output feature 
𝑆𝑆(𝑛𝑛−1)𝑘𝑘 by half by strided convolution. The size of the output feature of stage 𝑆𝑆(𝑛𝑛+1)(𝑘𝑘−2) is 
doubled through nearest neighbor up-sampling and 1×1 convolution. From 𝑆𝑆𝑛𝑛(𝑘𝑘−1), the feature 
map passes through the convolution layer without change in size. The input feature of  𝑆𝑆𝑛𝑛𝑛𝑛 is 
generated by summing those feature maps with the same size.  
  The heat maps to regress the joint position are obtained from the output feature of the first 
subnetwork. The ground truth heat maps are generated by applying 2D Gaussian with a 
standard deviation of 1 pixel from the ground truth pixel locations of each joint. The output 
representation is trained to approximate the ground truth heat maps using the mean squared 
error loss. 
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Fig. 2. Multi-resolution inputs and a guiding channel. The original target image is rescaled to various 
resolutions. At N > 2, a guiding channel filled with binary values is added as the fourth channel of the 

image. The features of the multi-resolution input images are extracted through stem networks and 
used for estimating joint positions. The features of the n-th subnetwork are added to the downscaled 

features from the (n-1)-th subnetwork and inserted into the network 
 

3.2 Multi-resolution Input Feature Fusion Network 

3.2.1 Multi-resolution Input Feature 
We propose a method to leverage multi-resolution input images for the estimation of 2D joint 
positions, making the framework robust for all image sizes including low-resolution images.  
Existing high-to-low and low-to-high frameworks [6-9, 18-19] use a single resolution input 
image. In these methods, the bounding box images of various sizes for target human are scaled 
to a large size such as 256×192 or 384×288, and then insert them into the network. In their 
methods, the size of the input images is fixed for all target images with different resolutions.  
Therefore, for the low-resolution target images, artifacts occur due to up-sampling. The 
degraded image adversely affects accurate estimation of the joint positions. To resolve this 
problem, in the proposed method, the bounding box image for target human is rescaled to 
multiple input images with various sizes, and the features extracted from the multiple images 
are fused in the network. In this way, the network can refer both high-resolution and low-
resolution input features, which leads to an accurate pose estimation. 
The bounding box image for target person I, whose height and width are h and w, is rescaled 

to multi-resolution input images 𝐼𝐼1, 𝐼𝐼2, … , 𝐼𝐼𝑛𝑛, … , 𝐼𝐼𝑁𝑁, where the sizes of the rescaled images are 
(ℎ1 × 𝑤𝑤1) , (ℎ2 × 𝑤𝑤2), … , (ℎ𝑁𝑁 × 𝑤𝑤𝑁𝑁)  respectively. They are generated by bicubic 
interpolation of I. As illustrated in Fig. 2, the stem network consists of two strided convolution 
layers that extract features from the input image 𝐼𝐼𝑛𝑛. The extracted feature of 𝐼𝐼𝑛𝑛 is inserted into 
𝑆𝑆𝑛𝑛1. For example, the extracted feature map of 𝐼𝐼1 becomes the input of 𝑆𝑆11. The feature from 
the middle layer of the upper subnetwork is fused with the feature extracted from the stem 
network. To match the dimension of the features, the feature map from the upper subnetwork 
is downscaled. Assuming that the feature map from the (n-1)-th subnetwork are fused to the 
input of n-th subnetwork, the input feature of 𝑆𝑆𝑛𝑛1 can be expressed as follows: 
 

Input feature of 𝑆𝑆𝑛𝑛1 =  stem(𝐼𝐼𝑛𝑛)⊕ 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝑆𝑆(𝑛𝑛−1)1(𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝐼𝐼𝑛𝑛−1)), stride = 2) 

3.2.2 Guiding Channel 
We introduce a guiding channel, which induces the multi-resolution input features to 



2334                                                                                                 Kim et al.: Multi-resolution Fusion Network for  
Human Pose Estimation in Low-resolution Images 

alternatively affect the network according to the resolution of the original target image. When 
the target image is low-resolution, the network is induced to be influenced by the image scaled 
up at a small magnification which has little degradation. On the other hand, when the target 
image is high-resolution, it is induced to be affected by the large-sized input image which does 
not lose much information. 

As illustrated in Fig. 2, for the 3-channel input image 𝐼𝐼𝑛𝑛, a ℎ𝑛𝑛 × 𝑤𝑤𝑛𝑛matrix whose elements 
are binary values is added as the 4th channel of 𝐼𝐼𝑛𝑛, which is called a guiding channel.  
The guiding channel is applied in 𝐼𝐼𝑛𝑛,𝑛𝑛 > 1. With the guiding channel added, the input of the 
stem network becomes a 4-channel image. When the resolution of the target image is with 
within the predefined range, all element values of the guiding channel are filled with 1, 
whereas when the resolution is out of the range, it is filled with 0. The performance was 
additionally increased by the introduction of the guiding channel, and related experiments are 
described in section 4.3. 
 

3.2.3 Variant Architectures 
The experiment was conducted with three model variations as shown in Table 1 to verify the 
effect of the number of input images and their rescaling resolutions. HRNet [9] includes 
HRNet-W32, a model with fewer parameters, and HRNet-W48, a model with more parameters. 
Experiments were conducted using HRNet-W32 as a baseline network. The resolution of 𝐼𝐼1 is 
set to 256×192, which is the resolution of the input image in HRNet-W32. Additionally, 𝐼𝐼2 or 
𝐼𝐼3 scaled to the lower resolution is inserted into the other subnetworks. The last column of 
Table 1 indicates the conditions under which each element of the guiding channel has a values 
of 1 or 0. Fig. 3 shows the structures of the model variations corresponding to (a), (b), and (c) 
shown in Table 1. The performances of all three models surpass the performance of the 
baseline on the low-resolution test images. A detailed explanation of the results is described 
in Section 4.3. 
 
 

Table 1. Proposed three model variations with multi-resolution input images. 
 I_n  

(height x width) 
Input feature 

(height x width) 
Guiding Channel 

(condition) 

OURS-(a) 
𝐼𝐼1 (256×192) 64×48 - 

𝐼𝐼2 (64×48) 32×24 1, if  96·96 < h · w  
0, otherwise 

OURS-(b) 
𝐼𝐼1 (256×192) 64×48 - 

𝐼𝐼3 (32×24) 16×12 1, if  96·96 < h · w 
0, otherwise 

OURS-(c) 

𝐼𝐼1 (256×192) 64×48 - 

𝐼𝐼2 (128×96) 32×24 1, if   64·64 < h · w < 128·128 
0, otherwise 

𝐼𝐼3 (64×48) 16×12 1, if h · w < 64·64 
0, otherwise 
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Fig. 3. Structures of the model variations corresponding to (a), (b), and (c) in Table 1. 

4. Experimental Result 

4.1 Dataset 
There is no publicly available pose estimation dataset for a distant person or low-resolution 
images. Instead, the most famous pose estimation dataset, MS COCO [21] is used for training 
and evaluation. In the COCO [21] dataset, the skeleton of a person is defined as 17 joint 
keypoints. It contains 57K images and more than 150K human instances. As shown in Fig. 4, 
the distribution of the bounding boxes in the COCO dataset is biased toward high resolution. 
To obtain a sufficient number of low-resolution images for an evaluation set, we extracted 
samples with a bounding box area larger than 64×64 and downsampled them to 24×18, 32×24, 
48×36, 64×48 size images. 

4.2 Evaluation Protocols 
For a fair comparison with the baseline, we follow the data augmentation of HRNet [9]. To 
operate robustly on images of varying resolutions, the network is learned from the images 
scaled from 0.65 to 1.35 times the original size of the bounding box. In addition, random 
rotation ([-45,° 45°]) and random flip are applied to the training images. The network is trained 
by Adam optimizer with the base learning rate 1e-3. The learning rate drops to 1e-4 and 1e-5 
at 170 and 200 epochs, respectively. There are 210 epochs in total. 

For the evaluation, the similarity between the estimated joint position and the corresponding 
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ground truth is calculated by Object Keypoint Similarity (OKS). OKS is represented as 
 

OKS =  
∑ exp (−𝑑𝑑𝑖𝑖2/2𝑠𝑠2𝑘𝑘𝑖𝑖2)𝑖𝑖  𝛿𝛿(𝑣𝑣𝑖𝑖 > 0)

∑ 𝛿𝛿(𝑣𝑣𝑖𝑖 > 0)𝑖𝑖
  

 
where 𝑑𝑑𝑖𝑖 denotes the Euclidean distance between two joints and 𝑣𝑣𝑖𝑖 the visibility flag on the 
ground truth. s and 𝑘𝑘𝑖𝑖 denotes the human size and a per-keypoint constant that controls falloff, 
respectively. If the OKS value is greater than the predefined threshold, the joint estimation is 
considered a success. The performance is measured by average precision (AP) and average 
recall (AR) of all joints. AP at threshold 0.5 and 0.75 are expressed as 𝐴𝐴𝐴𝐴0.5 and 𝐴𝐴𝐴𝐴0.75, 
respectively. And we use an average value of AP at thresholds [0.5, 0.55, …, 0.95] as one of 
the evaluation metrics and denote it as AP. Similarly, we calculate AR which is the average 
value of AR at thresholds [0.5, 0.55, …, 0.95]. 
 

 
Fig. 4. Human bounding box resolution distributions in the COCO training and validation datasets. 

The horizontal and vertical axes denote the image height and the number of bonding boxes belonging 
to the bin, respectively. The COCO dataset consists of high-resolution images, and there are few 

images with a height of 100 pixels or less. 
 

4.3 Ablation study 
An ablation study was conducted to investigate the effect of the multi-resolution input 
structure and the guiding channel. Table 2 shows the pose estimation results of our proposed 
method without the guiding channel, with the guiding channel, and the baseline. The method 
without the guiding channel leverages the multi-resolution inputs which consist of RGB three 
channels. The results are obtained for 5000 human bounding boxes in the COCO validation 
set. Table 2 shows the AP of each target resolution. As a result of using the multi-resolution 
structure, the overall performance exceeds the baseline. In particular, the results at 24×18 and 
32×24 showed significant improvements, about 1.5 AP scores, compared to the baseline. In 
the case of using the guiding channel, the performance improved about 0.4 to 0.6 AP scores 
in all scales. It is verified that leveraging a less degraded image in addition to the 256×192 size 
input image used in the HRNet [9] helps to accurately estimate poses from low-resolution 
images. In addition, the guiding channel that provides information about which of the input 
images is closest to the target image size contributes to performance improvement as well. 

Next, we conducted experiments with our proposed model variations explained in section 
3.2.3 to find the optimal model structure. Table 3 shows the experimental results for model 
variations (a), (b), and (c) in Table 1 and Fig. 3. All three models outperform the baseline. 
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Model (a) shows the best performance at 48×36 and 64×48, on the other hand, model (c) shows 
the best performance at 24×18, 32×24, and 48×36 which proves the usefulness of using multi-
resolution input features. 
 

4.4 Comparison on MSCOCO Dataset 
Table 2. Comparison with baseline and our proposed methods. Results are APs (average AP at 

thresholds [0.5, 0.55, …, 0.95]) on COCO validation set. 
Test bounding box size 

(height × width) 24×18 32×24 48×36 64×48 

Baseline 18.9 37.1 59.0 68.8 
OURS (without guiding channel) 20.4 38.6 59.7 69.0 

OURS  (with guiding channel) 21.0 39.0 60.2 69.5 
 
 

Table 3. Comparison with baseline and our model variations explained in section 3.2.3. Results are 
APs (average AP at thresholds [0.5, 0.55, …, 0.95]) on COCO validation set. 

Test bounding box size 
(height × width) 24×18 32×24 48×36 64×48 

Baseline 18.9 37.1 59.0 68.8 
OURS-(a) 21.0 39.0 60.2 69.5 
OURS-(b) 21.0 39.0 59.9 69.2 
OURS-(c) 21.3 39.1 60.2 69.1 

 
 

Table 4. Comparison with other 2D human pose estimation baselines on COCO validation set. 
 backbone AP 𝑨𝑨𝑨𝑨𝟓𝟓𝟓𝟓 𝑨𝑨𝑨𝑨𝟕𝟕𝟕𝟕 𝑨𝑨𝑨𝑨𝑴𝑴 𝑨𝑨𝑨𝑨𝑳𝑳 AR 

Hourglass [6] 8-stage 
Hourglass 66.9 - - - - - 

CPN [8] ResNet-50 68.6 - - - - - 
SimpleBaseline [7] ResNet-50 70.4 88.6 78.3 67.1 77.2 76.3 
SimpleBaseline [7] ResNet-152 72.0 89.3 79.8 68.7 78.9 77.8 

HRNet [9] HRNet-W32 74.4 90.5 81.9 70.8 81.0 79.8 
OURS-(a) HRNet-W32 74.3 90.2 82.1 70.7 81.2 79.7 

 
We tested the proposed network using the entire COCO validate image set including both 
small and large images. The performance of the proposed network is competitive with the 
baseline as shown in Table 4.  Both AP and AR showed the competitive performance to the 
baseline, HRNet [9]. The input image size of all the compared baseline networks is 256×192. 
The experimental result verifies that the proposed model is not only targeted for low-resolution 
images but rather improves accuracy on low-resolution images while maintaining the 
performance on high-resolution images. Note that, because the high-resolution image 
dominates the distribution of the COCO validation dataset, the performance improvement of 
the low-resolution images did not significantly affect the overall average score. 
Additionally, we investigate the effect of using multi-resolution input images for a backbone 

network with large parameters, which is the HRNet big model with an input size of 384×288 
[9]. We represent the proposed model structure in Table 5. Table 6 shows the comparison 
with baseline and our proposed method. HRNet, with the input size 384×288 yields severe 
performance degradation on low-resolution images than HRNet with input size 256×192. 
When the proposed method is applied to the big HRNet network, the performance on low-
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resolution images significantly increases. In particular, in 24×18 and 32×24, the performance 
increases by 4.1 and 2.9 AP scores, respectively, which is a larger gap than the case of HRNet 
256×192 backbone. 
The qualitative evaluation results of the baseline and the proposed methods are illustrated in 

Table 6-8. First, the results on the test set made by scaling the images of the COCO validation 
set to 24×18 size is shown in Table 7. The proposed model estimates the joint positions more 
accurately compared to the baseline, and the skeleton represents a pose similar to the ground 
truth. Table 8 shows the results of the test images with 32×24, 48×36, and 64×48 resolutions. 
Table 9 illustrates the comparison of the estimated pose of the baseline and the proposed 
method as the human bonding box resolution increases, for the difficult image sample. In 
24×18 size, the upper body and the background are hard to distinguish even with the eye, and 
both methods estimate the background parts as joints, resulting in a large error. In 32×24 size, 
our method accurately estimates the joints except for both arms. On the other hand, a large 
error still occurs in the baseline method. For the 64×48 size, our method yields more accurate 
results on in the right arm compared to the baseline. 
The qualitative evaluation results of the baseline and the proposed methods are illustrated in 

Table 7-9. First, the results on the test set made by downsampling the images of the COCO 
validation set to 24×18 size are shown in Table 6. The proposed model estimated the joint 
position relatively accurately compared to the baseline, and the skeleton represents a pose 
similar to the ground truth. Table 7 shows the estimated poses for the test images with 32×24, 
48×36, and 64×48 resolutions. Table 8 illustrates the comparison of the estimated poses of the 
baseline and that of the proposed method as the human bonding box resolution increases, for 
the difficult image sample. In 24×18 size, the upper body and the background are hard to 
distinguish, therefore, both methods result in a large error. In 32×24 size, our method 
accurately estimates the joints except for both arms. On the other hand, a large error still occurs 
in the baseline method. For the 64×48 size, our method yields more accurate results on the 
right arm compared to the baseline. 
 

Table 5. Proposed model structure using the backbone of HRNet-W48. 
I_n 

(height × width) 
Input feature 

 (height × width) 
Guiding Channel 

(condition) 

I1 (384×288) 96×72 - 

I2 (96×72) 48×36 1, if  96·96 < w·h  
0, otherwise 

 
 

Table 6. Comparison with baseline and our proposed method using the backbone of HRNet-W48. 
Results are APs (average AP at thresholds [0.5, 0.55, …, 0.95]) on COCO validation set. 
Test bounding box size 

(height x width) 24×18 32×24 48×36 64×48 

Baseline 15.8 35.6 59.1 69.5 
OURS 19.9 38.5 60.8 70.2 
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Table 7. Comparison of pose estimation results with the baseline on the COCO validation set 
downsampled to 24×18 size.  

Baseline 

    

OURS 

    

GT 

    

Baseline 

    

OURS 

    

GT 
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4.5 Applications 
We performed additional experiments by applying the proposed method to the images captured 
from an actual surveillance camera system. The test videos were recorded with an SD camera 
on top of a building. It is difficult to estimate the human pose in frames extracted from the 
video because they are low resolution and the shooting angle is slanted. The model weights 
learned from the COCO training images were used. As illustrated in Fig. 5, the baseline 
incorrectly detects body joints from the shadow part, on the other hand, the proposed method 
yields relatively accurate results 
 

Table 8. Comparison of pose estimation results with the baseline on the COCO validation set 
downsampled to 32×24, 48×36, and 64×48 sizes. 

 32×24 32×24 48×36 64×48 

Baseline 

    

OURS 

    

GT 

    

5. Conclusions 
In this paper, we have proposed a multi-resolution input feature fusion network that improves 
accuracy in low-resolution images while maintaining the performance for images of various 
sizes. In the proposed method, the bounding box human image is scaled to multiple input 
images of various sizes and inserted into the network. The stem network extract features from 
the input images and the features are fused between the subnetworks. Moreover, we have 
devised a guiding channel which induces the multiple input rescaled images to alternatively 
affect the network according to the resolution of the original target image. The experiments on 
MS COCO dataset and videos obtained from the actual surveillance camera system have 
demonstrated the effectiveness of our approach. Our method outperforms previous studies in  
 



KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 16, NO. 7, July 2022                                    2341 

Table 9. Comparison of the estimated poses of the baseline and that of the proposed method as the 
human bonding box resolution increases, for the difficult image sample. Tested resolutions are 24×18, 

32×24, 48×36, and 64×48. 
 24×18 32×24 48×36 64×48 

Baseline 

    

OURS 

    

GT 

    

 

 
Fig. 5. Test images captured from an actual surveillance camera system (left). The test videos were 

recorded with an SD camera on top of a building. Qualitative results of our proposed method and the 
baseline (right). The proposed method yields relatively accurate results to the baseline. 
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low-resolution images, however, estimation errors still exist when the boundary between the 
person and the background is blurred or the colors of the person and the background are similar. 
In this manner, research to estimate accurate joint positions of an image in which the 
distinction between a person and a background is ambiguous will be a meaningful future study. 
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